Highly Accurate Doubling Algorithms for *M*-matrix Algebraic Riccati Equations

> Jungong Xue, Fudan University (Joint work with Ren-cang Li)

The First Annual Meeting of Applied Mathematics: Frontier Aspects of Applied Mathematics, Dec 6-7, 2015, CASTS

ヘロト ヘ戸 ト ヘ ヨ ト ヘ ヨ

Outline

- 2 *M*-matrix Algebraic Riccati Equation
- Highly Accurate Doubling Algorithms
- 4 Numerical Example

MATRIX COMPUTATION

- Input matrix A, compute function f(A)
- f(A) may be
 - Solution of linear system Ax = b
 - Solution of eigenvalue problem $Ax = \lambda x$
 - • •
- In general, conventional algorithms are at best backward stable

$$f(A)_{\text{computed}} = f(A + E), \quad ||E|| = O(\mathfrak{u})||A||$$

< ロ > < 同 > < 回 > < 回 > < 回 >

ACCURACY OF BACKWARD STABLE ALGORITHMS

• Perturbation analysis

$$\frac{\|f(A+E) - f(A)\|}{\|f(A)\|} \le \kappa(A) \frac{\|E\|}{\|A\|}$$

- If *κ*(*A*) is large, backward stable algorithms can't produce accurate solution.
- If κ(A) is not large, backward stable algorithms produce accurate solution, but in norm-wise sense. The relative accuracy of small entries in f(A) can't be warranted.

CAE: COMPUTE ACCURATELY AND EFFICIENTLY

- Accurately: each entry of f(A) is computed with guaranteed relative accuracy
- Efficiently: computation is in polynomial time
- Why CAE?
 - Needed in some applications.
 - It is worthwhile to compute to the accuracy warranted by input data.

Demmel, ICM 2002, ICIAM 2003, Acta Numerica 2008

NECESSARY CONDITION FOR CAE

• Entry-wise perturbation analysis: for $|E| \le \epsilon \cdot |A|$,

$$|f(A+E) - f(A)| \le \nu(A)\epsilon \cdot |f(A)|$$

- If v(A) < ∞ and isn't large, then small relative changes in entries of A cause small relative changes in entries of f(A)
- Under traditional model of floating point arithmetic: "The class that we can CAE appears to be identical to the class where all the outputs are in fact accurately determined by the inputs"

----Demmel, ICIAM 2003

M-MATRIX

• $A \in \mathbb{R}^{n \times n}$ is called an *M*-matrix if

$$A = \rho I - B,$$

where *B* is nonnegative and $\rho \ge \rho(B)$, the spectral radius of *B*.

• If A is a nonsingular M-matrix, then A^{-1} is entrywise nonnegative.

M-matrix Algebraic Riccati Equation

• An *M-Matrix Algebraic Riccati Equation*(MARE) is the matrix equation

$$XDX - AX - XB + C = 0,$$

for which

$$W = \left[\begin{array}{cc} B & -D \\ -C & A \end{array} \right],$$

is a nonsingular or an irreducible singular *M*-matrix.

• MAREs have wide applications in applied probability, transportation theory ...

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

MINIMAL NONNEGATIVE SOLUTION

• MARE

$$XDX - AX - XB + C = 0$$

has a unique minimal nonnegative solution Φ , i.e.,

 $\Phi \leq X$ for any other nonnegative solution *X*.

• The dual equation

$$D - YA - BY + YCY = 0$$

is a MARE and has the minimal nonnegative solution Ψ .

ENTRYWISE PERTURBATION ANALYSIS FOR MARE

Let Φ and $\overline{\Phi}$ be minimal nonnegative solutions to MAREs

 $XDX - AX - XB + C = 0, \quad X\widetilde{D}X - \widetilde{A}X - X\widetilde{B} + \widetilde{C} = 0.$

Suppose $|W - \widetilde{W}| \le \epsilon |W|$, then

$$\begin{split} |(\Phi - \widetilde{\Phi}) \oslash \Phi| &\leq \epsilon \Upsilon \oslash \Phi + O\left(\epsilon^2\right) \\ &\leq \gamma \epsilon \, \mathbf{1}_{n \times m} + O\left(\epsilon^2\right), \end{split}$$

where \oslash denotes the entrywise division, Υ and γ are defined by

$$(A - \Phi D)\Upsilon + \Upsilon(B - D\Phi) = D_A \Phi + \Phi D_B, \quad \gamma = \max_{i,j} (\Upsilon \oslash \Phi)_{(i,j)}.$$

Xue, Xu and Li, 2012

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

DOUBLING ALGORITHMS

- Initialization: constructing E_0 , F_0 , X_0 and Y_0 ;
- For $k \ge 0$, iterate

$$E_{k+1} = E_k (I - Y_k X_k)^{-1} E_k,$$

$$F_{k+1} = F_k (I - X_k Y_k)^{-1} F_k,$$

$$Y_{k+1} = Y_k + E_k (I - Y_k X_k)^{-1} Y_k F_k,$$

$$X_{k+1} = X_k + F_k (I - X_k Y_k)^{-1} X_k E_k.$$

- Different initializations result in
 - SDA Guo, Lin and Xu, 2006
 - SDA-ss Bini, Meini and Poloni, 2010
 - ADDA W.-G. Wang, W.-C. Wang and R.-C. Li, 2012

(日)

CONVERGENCE OF DOUBLING ALGORITHMS

If the initial matrices are properly selected,

- all E_k , F_k , X_k , and Y_k are entrywise nonnegative
- all $I X_k Y_k$ and $I Y_k X_k$ are nonsingular *M*-matrices
- All X_k have the same entrywise nonzero pattern as Φ , and all Y_k have the same entrywise nonzero pattern as Ψ
- the sequences $\{X_k\}$ and $\{Y_k\}$ converge increasingly and quadratically to Φ and Ψ , respectively.

(日)

WHY HIGHLY ACCURATE DOUBLING ALGORITHMS

- Small relative perturbations to the entries of A, B, C and D introduces small relative changes to the entries of Φ.
- The doubling algorithms are very efficient for computing Φ .
- It is desirable to design highly accurate doubling algorithms which compute Φ as accurately as the input data deserves.

・ 母 ト ・ ヨ ト ・ ヨ ト

IDEAS FOR HIGHLY ACCURATE DOUBLING ALGORITHMS

- The algorithm should be cancellation-free.
- A proper stopping criterion which guarantees small entrywise relative error.

・ 伺 ト ・ ヨ ト ・ ヨ ト

TRIPLET REPRESENTATION OF M-matrices

• A triplet representation $\{N_A, \boldsymbol{u}, \boldsymbol{v}\}$ of an M-matrix $A \in \mathbb{R}^{n \times n}$ consists of

$$N_A = \operatorname{diag}(A) - A, 0 < \boldsymbol{u} \in \mathbb{R}^n$$
, and $\boldsymbol{v} = A\boldsymbol{u} \ge 0$,

• Triplet representation is either known explicitly or has to be computed.

Alfa, Xue and Ye, 2002; Xue, Xu and Li, 2012

ENTRYWISE PERTURBATION ANALYSIS VIA TRIPLET Representation

If

$$|N_A - N_{\tilde{A}}| \le \epsilon N_A, \quad |\boldsymbol{u} - \tilde{\boldsymbol{u}}| \le \epsilon \boldsymbol{u}, \quad |\boldsymbol{v} - \tilde{\boldsymbol{v}}| \le \epsilon \boldsymbol{v},$$

then

$$|A^{-1} - \tilde{A}^{-1}| \le ((2n - 1)\epsilon + O(\epsilon^2))A^{-1}$$

Alfa, Xue and Ye, 2002

GTH-LIKE ALGORITHM

- Let A has triplet representation $(N_A, \boldsymbol{u}, \boldsymbol{v})$
- One step of Gaussian elimination

$$A = \begin{bmatrix} a_{11} & -\boldsymbol{a}^{T} \\ -\boldsymbol{b} & A_{1} \end{bmatrix} = \begin{bmatrix} 1 \\ -\frac{1}{a_{11}}\boldsymbol{b} & I \end{bmatrix} \begin{bmatrix} a_{11} & -\boldsymbol{a}^{T} \\ A^{(1)} \end{bmatrix}$$

with $A^{(1)} = A_{1} - \frac{1}{a_{11}}\boldsymbol{b}\boldsymbol{a}^{T}$
• Let $\boldsymbol{u} = \begin{bmatrix} u_{1} \\ \bar{\boldsymbol{u}} \end{bmatrix}, \boldsymbol{v} = \begin{bmatrix} v_{1} \\ \bar{\boldsymbol{v}} \end{bmatrix}$
 $A^{(1)}\bar{\boldsymbol{u}} = \bar{\boldsymbol{v}} + \frac{v_{1}}{a_{11}}\boldsymbol{b}$

伺き くほき くほう

GTH-LIKE ALGORITHM

- Construct the triplet representation $(N_{A^{(1)}}, \bar{\boldsymbol{u}}, \boldsymbol{v}^{(1)})$
 - Compute the off-diagonal entries of $N_{A^{(1)}}$

$$|a_{ij}^{(1)}| = |a_{ij}| + \frac{b_i a_j}{a_{11}}, \qquad i \neq j$$

$$\mathbf{v}^{(1)} =: A^{(1)} \bar{\mathbf{u}} = \bar{\mathbf{v}} + \frac{v_1}{a_{11}} \mathbf{b}$$

- No substraction of same signed numbers
- Compute A^{-1} with entrywise relative accuracy $O(\mathfrak{u})$.

Alfa, Xue and Ye, 2002

GTH-LIKE ALGORITHMS IN DOUBLING ALGORITHMS

- Construct triplet representations of *M*-matrices $I X_k Y_k$ and $I Y_k X_k$.
- Compute $(I X_k Y_k)^{-1}$ and $(I Y_k X_k)^{-1}$ using the GTH-like algorithm.

OLD METHOD OF CONSTRUCTING TRIPLET REPRESENTATION

At each step, construct triplet representations of $I - X_k Y_k$ and $I - Y_k X_k$ by solving some linear systems,

- Time-consuming
- Not cancellation-free
- The entrywise relative accuracy of the computed $(I X_k Y_k)^{-1}$ and $(I - Y_k X_k)^{-1}$ depends on some condition number

Xue, Xu and Li, 2012

不得下 イヨト イヨト

NGUYEN AND POLONI'S WORK

For the special case W1 = 0, they develop a method to construct triplet representations for $I - X_k Y_k$ and $I - Y_k X_k$ in a cancellation-free manner.

Nguyen and Poloni, 2015

・ 伺 ト ・ ヨ ト ・ ヨ ト

OUR CONTRIBUTIONS

- Extends Nguyen and Poloni's work to all MAREs.
- Proposing an entrywise relative residual which reveals the entrywise relative accuracy of all entries.

OLD INITIALIZATION OF ADDA

Select

$$\hat{\alpha} \geq \max_{1 \leq i \leq m} A_{(i,i)}, \quad \hat{\beta} \geq \max_{1 \leq j \leq n} B_{(j,j)},$$

• Set

$$A_{\hat{\beta}} = A + \hat{\beta}I_n, \qquad B_{\hat{\alpha}} = B + \hat{\alpha}I_m,$$

$$U_{\hat{\alpha}\hat{\beta}} = A_{\hat{\beta}} - CB_{\hat{\alpha}}^{-1}D, \qquad V_{\hat{\alpha}\hat{\beta}} = B_{\hat{\alpha}} - DA_{\hat{\beta}}^{-1}C,$$

• Set

$$\hat{E}_0 = -I_m + (\hat{\alpha} + \hat{\beta}) V_{\hat{\alpha}\hat{\beta}}^{-1}, \quad \hat{F}_0 = -I_n + (\hat{\alpha} + \hat{\beta}) U_{\hat{\alpha}\hat{\beta}}^{-1}, \hat{Y}_0 = (\hat{\alpha} + \hat{\beta}) B_{\hat{\alpha}}^{-1} D U_{\hat{\alpha}\hat{\beta}}^{-1}, \quad \hat{X}_0 = (\hat{\alpha} + \hat{\beta}) U_{\hat{\alpha}\hat{\beta}}^{-1} C B_{\hat{\alpha}}^{-1}.$$

W.-G. Wang, W.-C. Wang and R.-C. Li, 2012

3

COMPACT FORM OF OLD INITIALIZATION

Original initialization of ADDA can be combined into

$$\begin{bmatrix} \hat{E}_0 & \hat{Y}_0 \\ \hat{X}_0 & \hat{F}_0 \end{bmatrix} = \begin{bmatrix} B + \hat{\alpha}I_m & -D \\ -C & A + \hat{\beta}I_n \end{bmatrix}^{-1} \begin{bmatrix} \hat{\beta}I_m - B & D \\ C & \hat{\alpha}I_n - A \end{bmatrix}.$$

Poloni and Reis, 2011

NGUYEN AND POLONI'S INITIALIZATION

• Set
$$\alpha = \hat{\alpha}^{-1}, \beta = \hat{\beta}^{-1}$$
 and let

$$\begin{bmatrix} E_0 & Y_0 \\ X_0 & F_0 \end{bmatrix} = \begin{bmatrix} \alpha I & \\ & \beta I \end{bmatrix} \begin{bmatrix} \hat{E}_0 & \hat{Y}_0 \\ \hat{X}_0 & \hat{F}_0 \end{bmatrix} \begin{bmatrix} \hat{\beta} I & \\ & \hat{\alpha} I \end{bmatrix},$$

• For $k \ge 0$

$$E_k = \left(\frac{\alpha}{\beta}\right)^{2^k} \hat{E}_k, \quad F_k = \left(\frac{\beta}{\alpha}\right)^{2^k} \hat{F}_k, \quad \hat{X}_k = X_k, \quad \hat{Y}_k = Y_k.$$

• Unify three main doubling algorithms: SDA ($\alpha = \beta$), SDA-ss ($\alpha = 0$ or $\beta = 0$), ADDA (in general).

```
Nguyen and Poloni, 2015
```

COMPACT FORM OF NEW INITIALIZATION

Nguyen and Poloni's initialization can be combined into

$$\begin{bmatrix} E_0 & Y_0 \\ X_0 & F_0 \end{bmatrix} = \begin{bmatrix} \alpha B + I_m & -\beta D \\ -\alpha C & \beta A + I_n \end{bmatrix}^{-1} \begin{bmatrix} I_m - \beta B & \alpha D \\ \beta C & I_n - \alpha A \end{bmatrix}.$$

TRIPLET REPRESENTATION OF W

The triple representation $\{N_W, \boldsymbol{u}, \boldsymbol{v}\}$ of W, i.e.,

$$\boldsymbol{u} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} > 0, \quad \boldsymbol{v} = W\boldsymbol{u} = \begin{bmatrix} B & -D \\ -C & A \end{bmatrix} \begin{bmatrix} \boldsymbol{v}_1 \\ \boldsymbol{v}_2 \end{bmatrix} \ge 0,$$

is either known explicitly or has to be computed

Xue, Xu and Li, 2012

Uniformly Bounded E_k and F_k

Let E_0, F_0, Y_0, X_0 be constructed by Poloni and Reis's method. Then

$$\begin{bmatrix} E_k & Y_k \\ X_k & F_k \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \le \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \quad \text{for all } k \ge 0.$$

In particular, if v = 0, then

$$\begin{bmatrix} E_k & Y_k \\ X_k & F_k \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} = \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \quad \text{for all } k \ge 0.$$

TRIPLET REPRESENTATIONS VIA AUXILIARY VECTORS

Let

$$\begin{bmatrix} \boldsymbol{w}_1^{(k)} \\ \boldsymbol{w}_2^{(k)} \end{bmatrix} := \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} - \begin{bmatrix} E_k & Y_k \\ X_k & F_k \end{bmatrix} \begin{bmatrix} \boldsymbol{u}_1 \\ \boldsymbol{u}_2 \end{bmatrix} \ge 0,$$

Since

$$(I - X_k Y_k) u_2 = \underbrace{w_2^{(k)} + F_k u_2 + X_k (E_k u_1 + w_1^{(k)})}_{=: v_2^{(k)}} \ge 0,$$

$$(I - Y_k X_k) u_1 = \underbrace{w_1^{(k)} + E_k u_1 + Y_k (F_k u_2 + w_2^{(k)})}_{=: v_1^{(k)}} \ge 0,$$

Triplet Representation

$$I - Y_k X_k = \{N_{I-Y_k X_k}, \boldsymbol{u}_1, \boldsymbol{v}_1^{(k)}\},\$$

$$I - X_k Y_k = \{N_{I-X_k Y_k}, \boldsymbol{u}_2, \boldsymbol{v}_2^{(k)}\}.$$

Jungong Xue, Fudan University (Joint work with Ren-cang Li) Highly Accurate Doubling Algorithms for M-matrix Algebraic Riccati

・ 伺 ト ・ ヨ ト ・ ヨ ト

Update of Auxiliary Vectors

- Initial auxiliary vector $\begin{bmatrix} \boldsymbol{w}_1^{(0)} \\ \boldsymbol{w}_2^{(0)} \end{bmatrix}$ can be calculated in a cancellation-free manner.
- The auxiliary vectors can be computed recursively

$$\mathbf{w}_1^{(k+1)} = \mathbf{w}_1^{(k)} + E_k (I - Y_k X_k)^{-1} [\mathbf{w}_1^{(k)} + Y_k \mathbf{w}_2^{(k)}], \\ \mathbf{w}_2^{(k+1)} = \mathbf{w}_2^{(k)} + F_k (I - X_k Y_k)^{-1} [X_k \mathbf{w}_1^{(k)} + \mathbf{w}_2^{(k)}].$$

Remark. As $E_k(I - Y_kX_k)^{-1}$ and $F_k(I - X_kY_k)^{-1}$ has been calculated during the doubling procedure, the cost of update of residual $v_i^{(k)}$ is negligible

ENTRYWISE RELATIVE RESIDUAL

Splitting

$$A = D_A - N_A$$
, $D_A = \text{diag}(A)$,
 $B = D_B - N_B$, $D_B = \text{diag}(B)$.

Define

$$\mathcal{R}_L(X) \equiv XDX + N_AX + XN_B + C, \quad \mathcal{R}_R(X) \equiv D_AX + XD_B,$$

Let $\widetilde{\Phi}$ be a nonnegative approximation of Φ , define

$$\operatorname{ERRes}(\widetilde{\Phi}) = \max_{i,j} \frac{|\mathcal{R}_L(\widetilde{\Phi}) - \mathcal{R}_R(\widetilde{\Phi})|_{(i,j)}}{[\mathcal{R}_R(\widetilde{\Phi})]_{(i,j)}}.$$

ENTRYWISE RELATIVE ERROR

Theorem

Let $\widetilde{\Phi} \approx \Phi$ satisfy $0 \leq \widetilde{\Phi} \leq \Phi$ and that $\widetilde{\Phi}$ and Φ share the same entrywise nonzero pattern. If ERRes is no bigger than ϵ and if ϵ is sufficiently tiny, then

$$\begin{split} |(\Phi - \widetilde{\Phi}) \otimes \Phi| &\leq \epsilon \Upsilon \otimes \Phi + O\left(\epsilon^2\right) \\ &\leq \gamma \epsilon \, \mathbf{1}_{n \times m} + O\left(\epsilon^2\right), \end{split}$$

where \oslash denotes the entrywise division, Υ and γ are defined by

$$(A - \Phi D)\Upsilon + \Upsilon(B - D\Phi) = D_A \Phi + \Phi D_B, \quad \gamma = \max_{i,j} (\Upsilon \otimes \Phi)_{(i,j)}.$$

< ロ > < 同 > < 回 > < 回 > < 回 >

STOPPING CRITERION

• First check Kahan's criterion

$$\frac{(X_{k+1} - X_k)_{ij}^2}{(X_k - X_{k-1})_{ij} - (X_k - X_{k+1})_{ij}} \le \epsilon \cdot (X_{k+1})_{ij} \text{ for all } i \text{ and } j$$

• If Kahan's criterion is satisfied, check (probably with a different ϵ) if

 $\operatorname{ERRes}(X_{k+1}) \leq \epsilon$

Algorithms Compared

- accADDA: use GTH-like algorithm together with cancellation-free triplet representation construction to compute all the inverses
- *plain* ADDA: simply use the usually Gaussian elimination with partial pivoting, such as MATLAB's operators "\" and "/", to compute all the inverses

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ENTRYWISE RELATIVE ERROR

Let $\widetilde{\Phi}$ be a nonnegative approximation of Φ , define

$$\text{ERRrr}(\widetilde{\Phi}) = \max_{i,j} \frac{|(\widetilde{\Phi} - \Phi)_{(i,j)}|}{\Phi_{(i,j)}}.$$

Remark. The 'Exact' Φ is either known explicitly or computed by *Maple* with 100 decimal digits.

・ 伺 ト ・ ヨ ト ・ ヨ ト

Example 1

$$A = 18 \cdot I_2, \quad B = 180002 \cdot I_{18} - 10^4 \cdot \mathbf{1}_{18 \times 18}$$

$$C = \mathbf{1}_{2 \times 18}, \qquad D = C^{\mathrm{T}}.$$

Jungong Xue, Fudan University (Joint work with Ren-cang Li) Highly Accurate Doubling Algorithms for *M*-matrix Algebraic Riccati

・ロト ・ 理ト ・ ヨト ・ ヨト

э

EXAMPLE 2

$$B = \begin{bmatrix} 3+\delta & -1 & & \\ & 3+\delta & \ddots & \\ & & \ddots & -1 \\ -1 & & 3+\delta \end{bmatrix} \in \mathbb{R}^{100 \times 100}$$

$$C = 2I_{100}, \quad A = B, \quad D = C,$$

where $\delta = 2^{-24}$

・ロト ・ 理ト ・ ヨト ・ ヨト

Example 3

$$A = \begin{bmatrix} 4 & 0 & 0 \\ 0 & 15 + \delta & -5 \\ 0 & -5 & 15 \end{bmatrix}, \qquad B = \frac{1}{1.001} \begin{bmatrix} 15 & -5 & 0 \\ -5 & 15 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$
$$C = \begin{bmatrix} 0 & 0 & 4 \\ 5 & 5 & \delta \\ 5 & 5 & 0 \end{bmatrix}, \qquad D = \frac{1}{1.001} \begin{bmatrix} 0 & 5 & 5 \\ 0 & 5 & 5 \\ 4 & 1 & 0 \end{bmatrix},$$

where $\delta = 10^{-8}$.

・ロト ・聞 ト ・ ヨ ト ・ ヨ ト

NUMERICAL RESULTS

Eg.	accADDA		plain ADDA		
	ERRrr	ERRes	ERRrr	ERRes	Y
1	$1.2 \cdot 10^{-15}$	$3.9 \cdot 10^{-16}$	$4.5 \cdot 10^{-13}$	$3.9 \cdot 10^{-16}$	$1.0 \cdot 10^{4}$
2	$2.1 \cdot 10^{-15}$	$1.7 \cdot 10^{-15}$	$5.9 \cdot 10^{-12}$	$1.7 \cdot 10^{-14}$	$1.1 \cdot 10^{3}$
3	$4.3 \cdot 10^{-16}$	$3.1 \cdot 10^{-16}$	$3.5 \cdot 10^{-10}$	$4.5 \cdot 10^{-11}$	$6.2 \cdot 10^2$

Jungong Xue, Fudan University (Joint work with Ren-cang Li) Highly Accurate Doubling Algorithms for M-matrix Algebraic Riccati

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Conclusion

- Construct triplet representation for all involved *M*-matrices in doubling algorithms in a cancellation-free manner for all MAREs.
- Propose an entrywise relative residual that reflects relative accuracy for all entries.
- New entrywise perturbation analysis is required.